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Abstract 

Parallel programming involves finding the potential parallelism in an application, choos- 
ing an algorithm, and mapping it to the architecture at hand. Since a typical algorithm 
has much more potential parallelism than any single architecture can effectively exploit, we 
usually program the parallelism that the available control constructs easily express and that 
the given architecture efficiently exploits. This approach produces programs that exhibit 
much less parallelism than the original algorithm and whose performance depends entirely 
on the underlying architecture. To port such a program to a new architecture, we must 
rewrite the program to remove any ineffective parallelism and to recover any lost parallelism 
appropriate for the new machine. 

In this paper we show how to adapt a parallel program to different architectures using 
control abstraction. With control abstraction we can define and use a rich variety of control 
constructs to represent an algorithm's potential parallelism. Since control abstraction sep- 
arates the definition of a construct from its implementation, a construct may have several 
different implementations, each exploiting a different subset of the parallelism admitted by 
the construct. By selecting an implementation for each control construct using annotations, 
we can vary the parallelism we choose to exploit without otherwise changing the source code. 
This approach produces programs that exhibit most of, if not all, the potential parallelism 
in an algorithm, and whose performance can be tuned for a specific architecture simply by 
choosing among the various implementations for the control constructs in use. 

This work was supported by the National Science Foundation under research grant CDA-8822724, and 
the Office of Naval Research and Defense Advanced Research Projects Agency under research contract 
N00L.14-82-K-0193. The Government has certain rights in this material. 
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20.   ABSTRACT 

Parallel programming involves finding the potential parallelism in an application, 
choosing an algorithm, and mapping it to the architecture at hand. Since a typical 
algorithm has much more potential parallelism than any single architecture can 
effectively exploit, we usually program the parallelism that the available control 
constructs easily express and that the given architecture efficiently exploits. This 
approach produces programs that exhibit much less parallelism than the original 
algorithm and whose performance depends entirely on the underlying architecture. 
To port such a program to a new architecture, we must rewrite the program to 
remove any ineffective parallelism and to recover any lost parallelism appropriate 
for the new machine. 

In this paper we show how to adapt a parallel program to different architectures 
using control abstraction. With control abstraction we can define and use a rich 
variety of control constructs to represent an algorithm's potential parallelism. Since 
control abstraction separates the definition of a construct from its implementation, a 
construct may have several different implementations, each exploiting a different 
subset of the parallelism admitted by the construct.   By selecting an implementation 
for each control construct using annotations, we can vary the parallelism we choose 
to exploit without otherwise changing the source code. This approach produces 
programs that exhibit most of, if not all, the potential parallelism in an algorithm, 
and whose performance can be tuned for a specific architecture simply by choosing 
among the various implementations for the control constructs in use. 



1    Introduction 

Algorithms generally contain more potential parallelism than any one machine can effec- 
tively exploit. Although an algorithm may have an efficient realization on a wide range of 
architectures, including vector processors, bus-based multiprocessors, non-uniform memory 
access multiprocessors, and distributed memory machines, each class of architecture may 
exploit a different subset of the parallelism inherent in the algorithm. When we write a 
program, we typically limit consideration to the parallelism in the algorithm thai a given 
machine can effectively exploit, and ignore any other potential parallelism. While this ap- 
proach may result in an efficient implementation of the algorithm on a given machine, the 
program is difficult to tune or port to different architectures, because the distinction be- 
tween potential and exploited parallelism has been lost. All that remains in the program is 
a description of the parallelism that is most appropriate for our original assumptions about 
the underlying machine. 

Architectural adaptability is the ease with which programmers can tune or port a program 
to a different architecture. Many sequential programs adapt easily to a new architecture 
because the source code embeds few assumptions about the underlying machine (other than 
that it is von Neumann). Parallel programs, on the other hand, typically embed assumptions 
about the effective granularity of parallelism, the mapping of parallelism to processors, 
the cost of communication and synchronization, and the distribution of data. When an 
architecture violates any of these assumptions, the program must be restructured to avoid 
a potentially serious performance degradation. This restructuring can be complex, because 
the underlying assumptions are rarely explicit, and the ramifications of each assumption 
are difficult to discern. We can measure architectural adaptability by the extent of source 
code changes necessary to adapt a program to an architecture, and the intellectual effort 
required to select those changes. 

In this paper we address one aspect of architectural adaptability for parallel programs: 
the ease with which programmers can select the parallelism in an algorithm appropriate for 
a given machine. This pctiticular aspect of adaptability is especially important because we 
cannot always predict the most efficient parallelization for a given architecture in advance. 
In addition, porting to a new architecture may require a significant change in parallelization, 
and a drastic change in any source code developed without architectural adaptability in 
mind. 

Our approach to adaptability requires that a program specify the potential parallelism in 
an algorithm that an architectures of interest might exploit. Only a subset of the potential 
parallelism will be realized on a given architecture, but the inclusion of additional potential 
parallelism in the source code will facilitate future adaptation to another architecture. 

A programming system provides architectural independence over a range of architectures 
when it automatically selects the exploitation of parallelism for a particular architecture in 
that range and the programmer makes no architecture-specific changes. Given the diffi- 
culty of achieving true architectural independence, we envi&jon a simple mechanism, such 
as annotations, that enables the programmer to select the exploited parallelism without 
significant changes to the rest of the source program. Changing annotations will B.ua>''y 
suffice to adapt a program to an architecture. Where changes to source code are necessary, 
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we would like to minimize both the number of changes and the effort required to make the 
changes. 

We are interested in programs written in explicitly parallel programming languages. 
These programs use control flow constructs, such as fork, cobegin, and parallel for, to 
introduce parallel execution. Since the expression of parallelism in these languages is fun- 
damentally an issue of control flow, the control constructs provided by the language can 
either help or hinder attempts to express and exploit parallelism. 

Given the importance of control flow in parallel programming, it seems premature to 
base a language on a small, fixed set of control constructs. In addition, if we are to encourage 
programmers to specify all potential parallelism, we must make it easy and natural to do 
so; no small number of control constructs will suffice. What is required is a mechanism to 
create new control constructs that precisely express the parallelism in an algorithm. Control 
abstraction provides us with the necessary flexibility and extensibility. 

With control abstraction, programmers can build new control constructs beyond those a 
language may provide. Each user-defined control construct accepts as a parameter a body 
of code to execute and its execution environment. The implementation of the construct 
defines an ordering among different executions of the body of code. For example, using 
control abstraction we can define a forall construct that accepts a range of integers and a 
body of code to execute for each integer in the range. The semantics of forall could be that 
iteration i + 1 may not proceed until iteration i ends, thereby requiring sequential execution. 
Alter' tively, the semantics might allow iteration t-|-1 to overlap or even precede iteration i, 
admiui. ? parallel execution. Using control abstraction, the user defines the exact semantics 
of tin construct, as well as the implementations. 

Much like data abstraction, which hides the implementation of an abstract data type 
from users of the type, control abstraction hides the °xact sequencing of operations from 
the user of the control construct. When the semantics of a construct, such as forall, 
admit either a parallel or sequential implementation, the user of the construct need not 
know which implementation is actually used during execution. The program will execute 
correctly whichever implementation is used. 

In general, a control construct defined using control abstraction may have several differ- 
ent implementations, each of which exploits different sources of parallelism. Programmers 
can choose appropriate exploitations of parallelism for a specific use of a construct on a given 
architecture by selecting among the implementations. The definition of a control construct 
represents potential parallelism; an implementation of the construct defines the exploited 
parallelism. Using annotations, we can easily select implementations without changing the 
program and thereby achieve architectural adaptability. 

This paper describes how to achieve architectural adaptability using control abstraction. 
Section 2 describes some related approaches to architectural adaptability. Section 3 presents 
a set of programming language primitives for parallel programming based on control ab- 
straction and provides an introduction to using and defining control constructs. Section 4 
uses these primitives to build some common parallel control constructs. Section 5 introduces 
architectural adaptability via annotations that select among multiple implementations of a 
control construct. Sections 6 and 7 bring these notions together in extended examples, de- 



veloping parallel programs for Gaussian elimination and subgraph isomorphism. Section 8 
discusses the interaction between synchronization and control abstraction. Section 9 sug- 
gests a general methodology for parallel programming with control abstraction. Section 10 
describes language implementation strategies for control abstraction that achieve execution 
efficiency comparable to that of conventional programming languages. Finally, we present 
our conclusions in section 11. 

2    Related Work 

In creating a parallel program, a programmer must decide what parallelism to exploit, 
how to map that parallelism to processors, how to distribute data among processors, and 
how to communicate between parallel tasks. Researchers have proposed several techniques 
that address each of these problems and aid architectural adaptability. In this paper we 
focus on the first problem, specifying and exploiting parallelism. Our solution to this 
problem is compatible with techniques developed by others to address mapping [Hudak, 
1986; Snyder, 1984], distribution [Coffin and Andrews, 1989; Harrison and Notkin, 1990], 
and communication [Black et ai, 1986]. 

Recent approaches to the problem of specifying and exploiting parallelism typically rely 
on a general strategy of representing much of the potential parallelism in an algorithm, and 
then selecting an appropriate subset. This strategy is a significant departure from earlier 
practice, where programs described only the parallelism exploited on a given machine, and 
therefore were difficult to adapt to a new architecture. 

Parallel Function Evaluation Functional programs have no side effects, so expressions 
may be evaluated in any order. As a consequence, we can evaluate all expressions in paral- 
lel, and parallelism is implicit in functional programs. There are two sources of parallelism 
in function evaluation: parallel evaluation of multiple arguments to a function and lazy 
evaluation of the value of a function. Owing to the difficulty of automatically finding and 
exploiting the optimal sources of parallelism in a functional program, several researchers 
have suggested the use of annotations to specify lazy, eager, parallel, and distributed func- 
tion evaluation [Burton, 1984; Halstead, 1985; Hudak, 1986]. 

PaiAlfl [Hudak, 1986; Hudak, 1988] is a functional language that provides annotations 
to select eager evaluation over lazy evaluation, resulting in parallel execution, and to map 
expression evaluation to processors. A mapped expression in ParAlfl can dynamically select 
the processor on which it executes. An eager expression executes in parallel with its sur- 
rounding context. By using a combination of eager and mapped expressions, a programmer 
can select the parallelism to be exploited and map it to the underlying architecture. The 
use of mapped and eager annotations does not change the meaning of the program, which 
in a functional programming language does not depend on the evaluation order. Thus, 
ParAlfl achieves a significant degree of architectural adaptability, requiring only changes to 
annotations to port a program between architectures. ParAlfl achieves this goal only in the 
coatext of functional languages, however. Many of the issues that we must address before 
we can achieve architectural adaptability for imperative programs do not arise in functional 



programs, including the expression of potential parallelism, the effect of exploiting paral- 
lelism on program semantics, and the relationship between explicit synchronization and 
parallelism. 

Although pure Lisp is functional, most Lisp-based programming languages are imper- 
ative. Like PaiAlfl, an imperative Lisp can exploit parallelism in function evaluation by 
selecting either lazy or eager (and potentially parallel) evaluation. For example, Multilisp 
[Halstead, 1985] provides the function pcall for parallel argument evaluation, and future 
for parallel expression evaluation. Qlisp [Goldman et ai, 1990] is similar, but provides 
more facilities for the conditional exploitation of parallelism. Unlike Par/Ufl, Multilisp is 
an imperative language with assignment. Since parallel execution may affect the order of 
assignments, the use of pcall and future to introduce parallelism can affect the semantics 
of the program. In particular, a programmer can use future only when certain that it 
will not produce a race condition. Halstead advocates a combination of data abstraction 
with explicit synchronization and a functional programming style to minimize the extent 
to which side-effects and parallelism conflict. 

To the extent that only the side-effect-free subset of Multilisp is used, both pcall and 
future can be thought of as annotations that select a parallel implementation without af- 
fecting the semantics of the program. Like ParAlfl, a side-effect-free Multilisp program can 
adapt easily to a new architecture with the addition or deletion of pcall and future. How- 
ever, Multilisp was not designed to be used in such a limited fashion. A Multilisp program 
that uses side-effects to any significant degree cannot adapt easily to a new architecture, 
since exploiting alternative parallelism in the program requires that the programmer un- 
derstand the relationship between side-effects and the intended use of pcall or future. 

Data Parallelism Data parallel language^ provide high-level data structures and data 
operations that allow programmers to operate on large amounts of data in an SIMD fashion. 
The compilers for these languages generate parallel or sequential code, as appropriate for 
the target machine. Fortran 8x [Albert et ai, 1988] and APL [Budd, 1984] provide oper- 
ators that act over entire arrays, which could have parallel implementations. The Seymor 
language [Miller and Stout, 1989] provides prefix, broadcast, sort, and divide-and-conquer 
operatioiis, which also have parallel implementations. These languages achieve architectural 
independence for one class of machine (i.e. vector or SIMD) by providing a set of parallel 
operations that have efficient implementations on that class of machine. 

The Paralation model [Sabot, 1988] and the Connection Machine Lisp [Steele and Hillis, 
1986] support data parallelism through high-level control operations such as iteration and 
reduction on parallel data structures. These operations represent a limited use of control 
abstraction, demonstrating that it can be used to define data parallelism. Such operations 
are not a general solution to the problem of specifying parallelism howe'/er, since parallelism 
is defined solely in terms of a particular data structure. 

Fixed Control Constructs Explicitly parallel languages typically provide a limited set 
of parallel control constructs, such as fork, cobegin, or parallel for loops, which program- 
mers use to simultaneously represent and exploit parallelism. If the degree of parallelism 



specified using these constructs is not appropriate for a given architecture, the resulting 
program is not efficient. In general, the correspondence between the parallelism described 
in the program and the parallelism exploited at run time is too restrictive in explicitly 
parallel languages; selecting an alternative parallelization often requires almost completely 
rewriting programs. 

Fortran 8x loosens the correspondence between potential and exploited parallelism with 
the do across construct, which has both sequential and parallel implementations. Pro- 
grammers use do across to specify potential parallelism, and the compiler can choose 
either a sequential or parallel implementation as appropriate. Compilers on different ar- 
chitectures may make different choices, thus providing a limited degree of architectural 
independence. 

The Par language [Coffin and Andrews, 1989] (based on SR [Andrews et al, 1988]) 
extends the concept of multiple implementations for a construct to user-defined implemen- 
tations. Par's primary parallel control construct is the co statement, which is a combination 
of cobegin and parallel for loops. The programmer may define several implementations of 
co, called schedulers, which map iterations to processors and define the order in which iter- 
ations execute. Using annotations, a programmer can choose among alternative schedulers 
for co, and thereby tune a program to the architecture at hand. 

Any single control construct may not easily express all the parallelism in an algorithm, 
however. Languages that depend on a fixed set of control constructs for parallelism limit 
their ability to express certain algorithms easily. When the given constructs do not easily 
express the parallelism in an algorithm, the programmer must either accept a loss of paral- 
lelism, or use the available constructs to express excessive parallelism, and then remove the 
excess using explicit synchronization. The former approach limits the potential parallelism 
that can be exploited, while the latter approach results in programs that are difficult to 
adapt to different architectures. In the particular case of Par, programmers must express 
all parallelism with co. There is a temptation to create new parallel control constructs 
by embedding synchronization within an implementation of co. This approach changes the 
semantics of co however, and leaves a program sensitive to the selection of implementations, 
violating the Par assumption that annotations do not change the meaning of the program, 

User-Defined Control Constructs The problem with any approach to architectural 
adaptability based solely on the selection of alternative implementations of a small fixed set 
of control constructs is that our ability to describe potential parallelism is limited to com- 
positions of the parallelism provided by the constructs. Chameleon [Harrison and Notkin, 
1990] represents a first step towards user-defined control constructs. Chameleon is a set 
of C++ classes designed to aid in the porting of parallel programs among shared-memory 
multiprocessors. It provides schedulers for tasks, which are a limited form of control ab- 
straction. Each task is a procedure representing the smallest unit of work that may execute 
in parallel. Schedulers call tasks via procedure pointers. Because Chameleon uses dynamic- 
binding in the implementation of schedulers, a compiler cannot implement tasks in-line. In 
addition, programmers must explicitly package the environment of the task and pass it to 
the scheduler. The resulting overhead is acceptable only when tasks are used to specify the 
medium-grain parallelism appropriate to shared-memory multiprocessors. 



Data Abstraction    > distribution and parallelism play an equally important role in 
architectural adaptability. Communication costs vary significantly across architectures, and 
the degree of parallelism and the distribution of data among processors determines the need 
for communication. Indeed, the primary focus of Par and Chameleon is on the use of data 
abstraction to hide data and processing distributions that may vary across architectures. 
Likewise, PaiAlfl provides facilities for the distribution of data and computation across 
processors. Par and Chameleon provide the minimal control mechanisms needed to support 
architectural adaptability via data abstraction; our approach to parallelism via control 
abstraction is complementary to their approach to data distribution via data abstraction. 

3     Parallel Programrm »g Model 

This section introduces a parallel programming model and its notation so that we can 
present concrete examples in our presentation. Our parallel programming model relies on 
a combination of only four control mechanisms, operation invocation, statement sequenc- 
ing, early reply, and first-class closures, to define sequential and parallel control constructs 
uniformly. These mechanisms are part of the Matroshka parallel programming model; see 
[Crowl, 1988] for additional details. With these mechanisms, programmers may build a rich 
variety of control constructs to represent precisely the parallelism in an algorithm. 

Operation Invocation By operation invocation, we refer to either procedure invocation 
in procedural languages, or to method invocation in object-based languages. In this paper, 
we use a procedural notation for operation invocation. Operation invocation is synchronous 
with respect to the caller. That is, the caller waits for the result before proceeding. For 
example, 

power   (  3,  4  ) 

computes and returns 34. For conciseness, we use a conventional prefix/infix expression 
notation for sequential data operations, such as integer addition. 

Statement Sequencing A sequence of statements defines a total order on statement ex- 
ecutions. Notationally, we separate statements by a semicolon, as in the following example: 

n   := 3+4;   j   := 4*5;  k   := n+j 

Early Reply An invocation may reply with a result and then continue executing in 
parallel with the caller. The caller waits for a reply, but does not wait for termination of 
the operation. Early reply is the sole source of parallelism in Matroshka. This mechanism 
is not new [Andrews et al, 1988; Liskov et al, 1986; Scott, 1987], but its expressive power 
does not appear to be widely recognized. We denote the value-returning reply statement 
with the keyword reply preceding the expression. For example, 

reply 8 



Replies that return control, but no value, omit the expression. Each operation or closure 
may have (and execute) only one reply. 

First-Class Closures General control abstraction requires a mechanism for encapsulat- 
ing and manipulating the body of a control construct. This code must have access to the 
environment that invokes the control construct. Like Lisp [Steele, 1984], Smalltalk [Gold- 
berg and Robson, 1983], and their derivatives, we use first-class closures to capture the 
code and its environment. Closures may accept parameters and return results. Named 
procedures are a form of closure, so all claims about closures ^Iso apply to procedures. 

Closures capture their environment at point of elaboration and may affect variables in 
their environments that are not visible to the callers of the closures. Closures are reusable. 
Programmers may invoke closures any number of times. In addition, closures may execute 
concurrently. The model provides no synchronization between multiple invocations of a 
closure. Programmers are responsible for ensuring that they invoke closures at the proper 
time. 

In our notation, the definition of a closure consists of a parameter list within parentheses 
followed by a sequence of statements within braces. One of these statements may be the 
reply statement. For notational convenience, when a closure takes no parameters, we omit 
the parameter list. We also omit the reply when it is the last statement in a closure and 
it returns no value. For example, we write a closure that accepts an integer parameter and 
returns twice its value as: 

(  i:   integer )  { reply 2*i > 

This is a similar to a Lisp A-expression. We use a type syntax similar to Pascal, including 
reference parameters. The type of this closure is: 

closure  (  i:   integer ):   integer 

Given a variable twice that references such a closure, we invoke the closure just as we would 
an operation: 

twice  ( 4  ) 

As an example of the use of closures in a control construct, consider the for construct 
for iteration over an integer range. It takes three parameters: an integer lower bound, an 
integer upper bound, and a closure that accepts an integer parameter. The definition (as 
opposed to the implementation) is: 

define for  ( lower,  upper:   integer;  work:   closure  (  iteration:   integer )   ) 

An example of its use is: 

for ( 1, 10, ( i: integer > { print i } ) 



Noting the Partial Order of Execution The presence of an early reply in a closure 
definition (and also in an operation definition) specifies a partial order of execution, which 
admits parallelism. For example, given the closure definition, 

( parameter:   type )  { Sj;   ...;  s,;   reply expr;   Sj-,   ...;  sn } 

the statements calling the closure 

...;   sx;   closure (  arg );  sy;   ... 

result in the following partial order of execution: 

sx —> evaluate arg —> s^ -^ ... -* Si —> evaluate expr 
/ 

\ 
Sv 

The statements 5j . ■ .sn may execute in parallel with statement Sy and its successors. 

Two events in the execution of an operation (or closure) are significant, its invocation 
and its reply. In describing the partial order provided by a control construct, we specify 
the partial order among these events using a set of rules. These rules do not implement 
the construct or define complete semantics, they merely state the temporal relationships. 
We use I operation to signify the invocation of operation, | operation to signify its 
reply, and -♦ to signify that the implementation of the operation must ensure that the 
event on the left side precedes that on the right side. We also specify universally quantified 
variables in brackets after the rule. Since the invocation of an operation (| operation) 
must necessarily precede its reply (j operation), we omit such rules. For example, the 
sequential for construct has the following control semantics: 

ifor  (  lower,  upper,  work )  -*  J work  (  lower ) 
t work  ( t )  -> J work  ( ? + 1  ) [f : lower  < % < upper] 
twork  ( upper )  ->  ffor  ( lower,  upper,  work ) 

These rules, respectively, are: the first iteration starts after the for starts; the current 
iteration replies before the next one starts; and the last iteration replies before for replies. 
This set of partial orders is actually a total order — no parallelism is possible. 

Conditional Execution Thus far we have presented no mechanism for conditional exe- 
cution. We adopt the approach of Smalltalk [Goldberg and Robson, 1983] and depend on 
a Boolean type and an if operation that conditionally executes a closure. In our case, the 
operation is: 

define if   (  condition:  boolean;  body:   closure  (  )   ) 

I if   i  true,  body )   —  J body  (  ) 
t body  (  )  ->  | if  (  true,  body  ) 



We invoke this operation just as we would any other. For example, in 

if  ( y>0.  < z  := x/y } ) 

the assignment executes only when y > 0. 

Given the if operation, we can build many other common control constructs.   For 
example, the while construct may have the following recursive implementation: 

implement while  ( fai      closure  (  ' ;  baole-u»; "bcdy;  closure  (  )  ) 
{  if  ( test  (  ),  -C body  (  );  while  (  test,  body  )  }  )  } 

For convenience in the remainder of the paper, we introduce two additional sequential 
control constructs, if else and repeat. Their implementations in terms of if are: 

implement  ifelse  (  condition:  boolean;   affirm,  negate:  closure  (  )   ) 
{  if   (  condition,  affirm );   if   ( not condition, negate )  } 

implement repeat  ( test:   closure  (  ):   boolean ) 
{  if  ( test  (  ),   { repeat  ( test   ())})} 

Note that we can pass the closure parameters to ifelse directly to if — we need not create 
literal closures for each construct. We expect that compilers will recognize the primitive 
control constructs (such as those found in most sequential languages) and generate code for 
them directly. 

Synchronization We have presented no mechanism for synchronization other than that 
implicit in an operation invocation waiting for the reply. We assume that ii^.y languages 
based on our model will provide some primitive synchronization mechai?j'im(s). We do 
not assume any particular synchronization operations in our examples; atomic memory 
accesses, atomic instructions like test-and-set, or higher-level synchronization primitives 
are all acceptable. 

4     Building Common Control Constructs 

In this section we show how to use our mechanisms for control abstraction to build well- 
known parallel programming constructs. The techniques we use generalize to implementing 
other control constructs. 

4.1    Fork and Join 

In our first example, we use closures and early reply to implement a fork-and-join control 
mechanism similar to that provided in Mesa [Lampson and Redell, 1980]. The fork op- 
eration starts the computation of a value, which the join operation later retrieves.  This 



fork-and-join is similar to a Multilisp future, except that programmers must request values 
explicitly with join.1 Its syntax and semantics are: 

define type forkjoin; 
define fork  ( var mailbox:  forkjoin;  work:   closure  (  ):   integer ); 
define join  (  var mailbox:  forkjoin  ):   integer 

i fork   ( mailbox,  work  )  —>  | work  (  ) 
twork  (  )  —>  Tjoin  ( mailbox ) 

These rules state that fork invokes work, and that join waits for the reply from work 
before replying. The user must invoke the join after the fork replies: 

Tfork   ( mailbox,  work )  —>  J join  ( mailbox ) 

These partial orders permit parallel execution. However, they do not guarantee parallelism 
because the rules state no order between the reply from fork and the invocation of work. 
The additional order: 

| fork  ( mailbox,  work )  ->  J work  (  ) 

which states that fork must reply before invoking work, would guarantee concurrent exe- 
cution. We clarify the reason for this omission in section 5. 

Assume a power operation that accepts two integers and returns the first argument 
raised to the power e;iven by the second argument. We can use the definition of fork and 
join to evaluate two invocations of the power operation in parallel. 

var mailbox:  forkjoin; 
var n,  sum:   integer; 
fork ( mailbox, { reply power ( 3, 4 ) } ); 
n := power ( b, 6 ) ; 
sum  := n + join  ( mailbox ) 

The following implementation of fork and join illustrate the use of early reply and 
explicit synchronization to achieve parallelism. This implementation is based solely on 
the mechanisms described in section 3, with the addition of atomic Boolean reads and 
writes. Busy-waiting synchronizes the two computations. Wc could easily change this 
implementation to use semaphores for synchronization and avoid busy waiting. 

implement forkjoin = record ready:  boolean;  result:   integer end 

implement fork 

Our sample definition is somewhat restrictive in that the closure argument may only return intege 
We could make our definition more general using some form of generic type facility; doing so is beyond th 
scope of this paper. 
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( var mailbox: forkjoin; work: closure ( ): integer ) 
{ mailbox.ready := false; 

reply;   no reply value, caller continues 
forkjoin.result := work ( ); 
forkjoin.ready := true } 

implement join ( var mailbox: forkjoin ): integer 
{ repeat ( { reply not mailbox.ready } );   busy wait 
reply mailbox.result } 

4.2 Cobegin 

Our next example is the cobegin construct, which executes two closures in parallel and 
replies only when both have replied.2 Its syntax and semantics are: 

define cobegin  (  workl,  work2:   closure  (  )   ) 

| cobegin ( workl, work2 )  -» ] workl  ( ) 
J cobegin ( workl, work2 )  — | work2  ( ) 
tworkl   ( )  —►  f cobegin ( workl, work2 ) 
| work2  ( )   —>  t cobegin  ( workl,  work2 ) 

These orders permit but do not guarantee parallel execution.   The orders that guarantee 
concurrent execution: 

J workl   C )  -♦  twork2  (  ) 
J work2  (  )  -»■  j workl   (  ) 

state that cobegin must invoke both closures before waiting on the replies. 

Given the above definition, we can use this statement to implement the parallel evalu- 
ation of integer powers from the previous example. 

var n, m, sum: integer; 
cobegin ( { n := power ( 3, 4 ) }, { m := power ( 5, 6 ) } ); 
sum := n + m 

We use a valueless version of our previous definition of forkjoin and closures to build 
an implementation of cobegin. 

implement cobegin  ( workl,  work2:   closure  (  )   ) 
{ var mailbox:  forkjoin; 

fork  ( mailbox,  workl  );  work2  (  );   join  ( mailbox  )  > 

We could provide a more general n argument cobegin given a language that allows lists as arguments 
(e.g. Lisp). 
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4.3    Forall 

In our next example we define an iterator over a range of integers, analogous to a parallel 
for loop or a CLU iterator [Liskov et ai, 1977].3 Its syntax and semantics are: 

define forall 
( lower,  upper:   integer;  work:  closure  (  iteration:   integer )   ) 

| forall  (  lower,  upper,  work  )  -*■  | work  (  i  ) [i : lower <i< upper] 
i work  (  z  )  ^  i work  ( i + 1  ) [z : lower < i < upper] 
t work  (. i )   -* j forall  (  lower,  upper,  work ) [i : lower <i< upper] 

These rules state, respectively, that: the forall starts before any iteration; iterations start 
in amending order;4 and all iterations reply before forall does. Again, we omit the rule 
that guarantees parallelism: 

| work  (  t  )   ->  j work  ( j  ) [i,j : lower <i< upper A  lower <j< upper] 

which says that the implementation would have to start all iterations before waiting on the 
reply of any iteration. 

We use cobegin and recursion to build a parallel divide-and-conquer implementation of 
forall. 

implement forall 
( lower,  upper:   integer;  work:  closure  (  iteration:  integer )   ) 

{ if  (  lower = upper,  { work  (  lower )   }  ); 
if  ( lower < upper, 

{ middle   :=  (lower + upper)  div 2; 
cobegin  (  { forall  (  lower, middle,  work  )  }, 

{ forall  ( middle+1,  upper,  work )})>)} 

This implementation executes each iteration of forall in parallel, and therefore would 
only be appropriate in cases where the granularity of parallelism supported by the architec- 
ture was well matched to the granularity of each iteration. Otlorwise. it would be better 
to use an alternative parallel implementation that creates a fixed number of tasks, each of 
which executes a set of iterations. The degree of parallelism provided by this alternative 
implementation is easily changed, but cannot be selected using annotations for operation 
implementations alone. 

These examples show the power of control abstraction when used to define parallel 
control flow mechanisms. Using closures and early reply we can represent many different 
forms of parallelism. In particular, we used closures, early reply, and a synchronization 
variable to implement fork join. We then used fork join to implement cobegin, and 
cobegin with recursion to implement forall. 

Unlike CLU, our emphasis is on the separation of semantics and implementation for general control 
constructs, rather than the ability to iterate over the values of any abstract type. 

This rule is useful primarily when using forall to implement other control constructs. 
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5    Architectural Adaptability 

In implementing an algorithm, we must choose a subset of the potential parallelism to 
exploit. There are two reasons why we might want to change the parallelism we actually 
exploit. 

Tuning: We may not be able to predict a priori those sources of parallelism in an algorithm 
that £re most appropriate for an architecture (or a particular class of input values). 
Changing an incorrect exploitation of parallelism can be a complex, ad hoc task, 
similar to the problem of changing data representations in a program lacking data 
abstraction. 

Porting: We may wish to port programs from one architecture to another and to vary 
the number of processors in use. Since parallel architectures vary widely, differert 
implementations of the same program will usually exploit different opportunities for 
parallelism. Uncovering and exploiting these opportunities can result in a massive 
restructuring of the program. 

Our approach uses control abstraction to define many different control constructs. The 
algorithm determines the control constructs used to represent potential parallelism; the 
architecture determines the implementations used to exploit parallelism. 

5.1     Multiple Implementations 

Data operations often have multiple implementations. For example, matrix addition has se- 
quential, vector, and parallel implementations, each appropriate to different architectures. 
We can extend this approach to control constructs as well. Control abstraction permits 
multiple implementations for a given control construct. These implementations can exploit 
differing sources of parallelism, subject to the partial order constraints of the construct. In 
effect, the definition of a control construct represents potential paraHelism; the implemen- 
tation defines the exploited parallelism. 

Our rules for each of the control constructs in section 4 deliberately left the partial 
orders underspecified, so as to admit either a parallel or sequential implementation. We 
complete the example constructs in section 4 by providing alternative implementations here. 
To distinguish each implementation, we annotate it with a descriptive identifier that follows 
the operation identifier. We assume programmers will annotate each implementation of a 
control construct with a name that describes the degree of parallelism exploited by the 
implementation. For example, our parallel divide-and-conquer implementation of forall 
from the previous section would be annotated as follows: 

implement forall $DIVIDED ( ... 

whereas the alternative parallel implementation that groups iterations together for execution 
would be annotated this way: 

implement forall $GR0UPED ( ... 
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As an example of implementation flexibility, consider a sequential implementation of 
forkjoin that computes the result of the join operation first, and then continues. 

implement type forkjoin SSEQUENTIAL = record result:   integer end 

implement fork $SEQUENTIAL 
( mailbox:  forkjoin;  work:   closure  (  ):   integer ) 

{ mailbox.result  := work(  )  }    -- caller waits for work to finish 

implement join $SEQUENTIAL  ( mailbox:  forkjoin ):   integer 
{ reply mailbox.result } 

This sequential implementation of forkjoin could be used to produce a sequential 
impleni^iuation of cobegin. Alternatively, we could modify the implementation of cobegin 
to execute the two statements in sequence without the use of forkjoin. 

implement cobegin $SEQUENTIAL  ( workl,  work2:   closure  (  )   ) 
{ workl  (  );  work2  (  )  } 

Although either approach results in a sequential implementation of cobegin, modifying 
the implementation of ccbegin has two advantages: the implementation of cobegin would 
no longer require an implementation of forkjoin and we would avoid the overhead of 
invoking the fork and join operations. 

Similarly, we can build a sequential implementation of f orall either by using an embed- 
ded sequential implementation of cobegin or by modifing the implementation of forall 
to use the sequential for construct. Once again there is an advantage to modifying the 
implementation of forall — the for construct has a particularly efficient implementation 
based on machine instructions. 

implement forall $SEQUENTIAL 
( lower,  upper:   integer;  work:  closure  (  iteration:   integer )   ) 

{ for  (  lower,  upper,  work )  } 

5.2     Selecting Implementations 

Once we have multiple implementations for a given control construct, some using varying 
amounts of parallelism, we can control the amou , of parallelism we exploit during execution 
by selecting appropriate implementations at the point of use. One simple technique for 
selecting implementations is program annotations. Each use of a construct can select an 
appropriate implementation by placing the corresponding annotation after the operation 
identifier in its invocation.5,6 For example, 

A reasonable set of default annotations will reduce the coding burden on the programmer. In particular, 
we recommend that the default implementation be sequential. 

Smart compilers could choose these annotations. The techniques for the automatic selection of different 
implementations for sequential data structures [Low, 1976] may apply to choosing implementations for 
control constructs. We do not assume such a compiler. 
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power $PARALLEL ( 3, 4 ) 

computes 34 with a parallel implementation of power. 

A wide range of choices for exploiting parallelism are possible by choosing different 
implementations of a few predefined constructs (such as forkjoin, cobegin and forall). 
When the library of predefined implementations does not provide enough architectural 
adaptability, a new implementation may be necessary. However, separating the semantics 
of use from the implementation of a control mechanism significantly simplifies the task of 
exploiting a different subset of the potential parallelism. 

In the following example we illustrate the use of annotations to select a particular 
parallelization for Quicksort. There are two potential sources of parallelism we consider. 
When the array is partitioned, the search for an element in the bottom half of the array 
that belongs in the top half can occur in parallel with a similar search that takes place in 
the top half. Similarly, the two recursive calls to Quicksort on each half of the array can 
occur in parallel. 

var sorting:   array   [  1..SIZE ]  of  integer; 
implement quicksort $C0ARSE  (  lower,  upper:   integer ) 
{ var rising, falling, key:   integer; 

if  (  lower < upper, 
i rising   := lower; 

falling   := upper; 
key   := sort Ing[lower]; 
while  ( 

{ cobegin $SEQUENTIAL  ( 
{ repeat  (  { rising +:= 1; 

reply key >= sorting [rising]   }  )  }, 
{ repeat  (  { falling -:=  1; 

reply key < sorting[falling]   }  )  }  ); 
reply rising <= falling >, 

{ swap sorting[rising]  and sorting[falling]  }  ); 
sorting [lower]   := sorting[failing] ; 
sorting[falling]   := key; 
cobegin $PARALLEL  (  < quicksort  ( lower,  falling  )  }, 

{ quicksort  ( falling+1, upper )})})} 

In this particular implementation we chose to r 'he coarse-grain parallelism avail- 
able during the recursive calls (using the $PARAL tion to select the parallel imple- 
mentation of the second cobegin) and chose not the finer-grain parallelism avail- 
able during partition. We could experiment with hue grain parallelism by simply changing 
the $SEQUENTIAL annotation to select the parallel implementation of the first cobegin. 

Current parallelizing compilers could probably find the fine grain parallelism automat- 
ically (there are no overlapping writes to variables), even though this parallelism may not 
be useful on many multiprocessors. The more important source of parallelism available in 
the recursive calls would be much more difficult, if not impossible, to find automatically. 
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The control constructs of section 4 have several possible implementations. We may 
adapt many parallel programs simply by choosing to use different implementations of these 
constructs on different architectures. 

6     Gaussian Elimination Example 

We will use Gaussian elimination (without pivoting) as an extended example of using control 
abstraction for architectural adaptability. Gaussian elimination is a well-known algorithm, 
has nontrivial synchronization constraints, and admits several different exploitations of 
parallelism. Our goal is to create a single source program that represents these different 
exploitations, each of which can be selected by an appropriate choice of annotations, and 
thereby duplicate previous extensive experience in the development and tuning of parallel 
Gaussian elimin?tion on the BBN Butterfly [Crowther et a/., 1985; Thomas, 1985; LeBlanc, 
1986; LeBlanc, 1988] without the same substantial effort. 

In solving a set of linear equations using Gaussian elimination, we first compute an 
upper triangular matrix from the coefficient matrix M, producing a modified vector of 
unknowns, which we then determine using back-substitution. Since back-substitution is a 
small percentage of the total time required to solve the equations, it was not performed 
in any of the earlier experiments, and we will not consider it here. We concentrate on 
computing the upper triangular matrix by eliminating (zeroing) entries in the lower triangle 
(those entries below the diagonal). To eliminate an entry M,j, we replace row M1 with 

Mi - Mjjf*, where Mj is known as the pivot row. However, we cannot perform this 
operation until after row Mj is stable, i.e., MJik - 0, V^ < j. In addition, all previous entries 
in row i must already be eliminated, i.e., Mhk = 0,VA; < ;'. These two synchronization 
constraints limit the amount of parallelism that we can expect to achieve. 

We present this example as a sequence of programs derived from the standard sequential 
algorithm, reflecting our earlier experiences with this application. Later, in section 9, we 
propose a methodology that avoids the intermediate steps in this sequence and proceeds 
directly to the final form. 

6.1    The First Cut 

Our first attempt is based on the standard sequential algorithm for upper triangulation.7 

var system:  array   [  1..SIZE ]   of  array  [ 1..SIZE ]   of float; 
for   (  1,  SIZE-1,   ( pivot:   integer ) 

{ for  ( pivot+1,  SIZE,   ( reduce:   integer ) 
{ var fraction  := system[reduce][pivot]  / system[pivot][pivot]; 

for  ( pivot,  SIZE,   (  variable:   integer ) 
{ system[reduce][variable] 

We choose pivot equations in index order; numerically robust programs choose pivot equations based on 
the data. 
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-:= fraction * system[pivot][variable]  })})}) 

One straightforward parallel implementation of this algorithm parallelizes the two inner 
loops with forall.8 Section ■ showed that the forall construct has both a parallel and 
sequential implementation. By using annotations to select a parallel implementation for 
both loops, we create an extremely fine-grain parallel implementation. 

var  system:  array   [ 1..SIZE ]   of array  [ 1..SIZE ]   of float; 
for  (  1,  SIZE-1,   ( pivot:   integer ) 

{ forall $DIVIDED  ( pivot+1,  SIZE,   ( reduce:   integer ) 
{ var fraction  := system[reduce][pivot]  / system[pivot][pivot]; 

forall $DIVIDED  ( pivot,  SIZE,   ( variable:   integer ) 
{ system[reduce][variable] 

-:= fraction * system[pivot][variable]  })})>) 

Vector processors could exploit the parallelism in the inner loop by invoking vector in- 
structions, rather than using the parallel implementation of forall. On a vector processor 
we would expect our compiler to recognize a $VECT0R annotation and produce vector in- 
structions for the innermost loop.9 To port the program to a vector multiprocessor, such 
as the Alliant FX, we would use both a parallel implementation for the outer forall and 
a vector implementation for the inner forall. 

The Butterfly lacks vector processors, and could not profitably exploit the parallelism 
in the inner loop. Therefore, we can select an implementation that does not attempt 
to exploit fine-grain parallelism by choosing the $SEQUENTIAL annotation for the inner 
loop. The resulting program exhibits a series of phases separated by the selection of a 
pivot. This was precisely the first program developed in our earlier work [LeBlanc, 1988]. 
Experimentation with this version of the program highlighted the time processors spent 
waiting for other processors to complete each phase. These empirical results led us to 
develop an implementation based on the synchronization constraints for the problem. 

The original sequential algorithm contains implicit synchronization constraints that 
caused us to serialize the outermost loop. The syiichronization constraints for the problem 
are that pivot equations must be applied to a given equation in order, and an equation must 
be reduced completely before it can be used as a pivot. In our notation, the constraints are: 

1 i reduce j -* i k reduce j [i,j,k : I < i < j < size A i < k < size] 
t i reduce j -* J j reduce k [i,j, k : 1 < i < j < size A j < k < size] 

We can enforce these constraints with explicit synchronization, resulting in the following 
program. We use blocking condition variables with wait and signal operations for synchro- 
nization. 

Iterations of the outermost loop cannot be executed in parallel because of the synchronization constraint 
that an equation cannot be used as a pivot until it has been reduced completely. 

Ue claim no particular advantage over vectorizing compilers in this example, however this example does 
show that control abstraction can represent fine-grain parallelism explicitly. 
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var system:  array   [ 1..SIZE ]   of array   [ 1..SIZE ]   of float; 
var done:   array  [ 1..SIZE ]   of condition; 
signal done[l] ; 
forall $DIVIDED  ( 2,  SIZE,   ( reduce:   integer ) 

{ for  (   1,  reduce-1,   ( pivot:   integer  ) 
{ wait done[pivot]; 

var fraction  := system[reduce][pivot]  / system[pivot][pivot]; 
forall  ( pivot,  SIZE,   ( variable:   integer ) 

{ system[reduce][variable] 
-:= fraction * system[pivot][variable]  } )  }  ); 

signal done [reduce]  }  ) 

Note that we cannot derive this particular version of the program from our previous versions 
by selecting an appropriate combination of implementation choices for the forall construct. 
In addition, we cannot select the use of explicit synchronization in this new program in 
tandem with the parallelism we plan to exploit, since explicit synchronization is embedded 
in the body of the loop. The fault, however, lies not in our approach, but in our failure 
to use the full power of control abstraction. In particular, we did not capture the order in 
which we select pivot and reduction equation pairs in a single control construct. 

6.2     A New Control Construct 

We can define a control construct, triangulate, that takes two parameters: the number 
of equations in the system, and the work for each pivot and reduction pair, which in this 
case is to reduce a single equation given a pivot. The construct encapsulates all parallelism 
and synchronization in selecting pairs of pivot and reduction equations. We encapsulate the 
reduction within a closure; its parameters are the indices of the pivot and reduction equa- 
tions. The triangulate construct invokes the closure with the appropriate pairings, while 
maintaining the synchronization necessary for correct execution. Its syntax and semantics 
are: 

define triangulate 
(  size:   integer;  work:   closure  ( pivot,  reduce:   integer  )   ) 

J, triangulate  (  size,  work )   -»  J work  (  i. j ) [i,j : 1 < i < j <  size] 
t work(  i. j )  -* i work  C k, j  ) [i,j,k : I < i < j <  size A  i<k <  size] 
t work(  i, j )  -* \ work  ( j,  k ) [i,j,k : 1 < i < j < size A i < k < size] 

This construct has several implementations, corresponding to the different exploitations 
of potential parallelism discussed above. A sequential implementation of triangulate is: 

implement triangulate $SEQUENTIAL 
(  size:   integer;  work:   closure  ( pivot,  reduce:   integer  )   ) 

{ for  (  1,  SIZE-1,   ( pivot:   integer ) 
{ forall  $SEQUENTIAL   ( pivot+1,   SIZE,   (  reduce:   integer  ) 

{ work  ( pivot,  reduce  )})>)} 
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By substituting forall $DIVIDED for fcrall $SEQUENTIAL we get triangulate $PHASED, 
which exploits the same parallelism as the earlier phased version of the program. In addition, 
we can also substitute f orall $GR0UPED for f orall $SEQUENTIAL to obtain a triangulate 
$PHASED_GROUPED. 

We exploit the more extensive parallelism based on the problem's synchronization con- 
straints with the following implementation: 

implement triangulate $SYNCHED 
( size:  integer;  work:   closure  ( pivot,  reduce:   integer )   ) 

■C var done:  array   [ L.size ]   of  condition; 
signal done[l]; 
forall $DIVIDED  ( 2.  size,   ( reduce:   integer ) 

{ for  (  1,  reduce-1,   ( pivot:   integer ) 
{ wait done [pivot]; 

work  ( pivot,  reduce  )  }  ); 
signal done [reduce]  }  )  } 

This implementation admits more parallelism than triangulate $PHASED, but may have 
higher execution overhead because of the need to accommodate synchronization. As ear- 
lier, we can substitute forall $GR0UPED for forall $DIVIDED to obtain a triangulate 
$SYNCHED_GROUPED. 

When rewritten to use triangulate, the fully parallel code to form the upper triangular 
matrix looks like this: 

var system:  array   [ L.SIZE ]   of  array   [ L.SIZE ]   of float; 
triangulate $SYNCHED  ( SIZE,   ( pivot,  reduce:   integer ) 

{ var fraction  := system[reduce][pivot]  / system[pivot][pivot]; 
forall $DIVIDED  ( pivot,  SIZE,   ( variable:   integer )' 

{ system[reduce][variable] 
-:= fraction * system[pivot] [variable]  >  )  }  ) 

By selecting an appropriate implementation for triangulate and the forall construct 
embedded in its body, we can describe all the previous parallelizations of this problem. 
Programmers can select twenty different implementations of this program by varying the two 
annotations to select a divide-and-conquer, grouped, sequential, or vector implementation of 
forall, and a synchronized divide-and-conquer, synchronized grouped, phased divide-ind- 
conquer, phased grouped, or sequential implementation of triangulate. Our experience 
has shown that triangulate $SYNCHEP_GRQUPED and forall $SEQUENTIAL is the most 
efficient implementation on the Butterfly. We expect that triangulate $SYNCHED_GROUPED 
and forall $VECT0R would be the most appropriate for the Alliant. This same program 
has been ported to a Sun workstation by selecting triangulate SSEQUENTIAL and forall 
$SEQUENTIAL. The key to the adaptability in our solution is the introduction of an algorithm- 
specific control construct. 

1!) 



7    Subgraph Isomorphism Example 

This section highlights the interaction of data abstraction and control abstraction. In partic- 
ular, we show that data abstractions with embedded control abstractions are a powerful and 
adaptable representation of potential parallelism. Our example is subgraph isomorphism. 
The problem is to find the set of isomorphisms from a small graph to subgraphs of a larger 
graph. We present a generalized form of the algorithm developed for the 1986 DARPA 
parallel architecture benchmark [Costanzo et a/., 1986], which is based on Ullmann's se- 
quential tree-search algorithm [Ullman, 1976]. The algorithm has four grains of parallelism, 
however the benchmark program only exploited one grain. Without a methodology and 
language to support architectural adaptability, there was not enough time available during 
the benchmark to write the different programs necessary to exploit the different grains. 

A graph isomorphism is a mapping from each vertex in one graph to a unique vertex in 
the second, such that if two vertices are connected in the first graph then their corresponding 
vertices in the second graph are also connected. In subgraph isomorphism, the second graph 
is an arbitrary subset of a larger graph. 

Our algorithm for finding isomorphisms postulates a mapping from one vertex in the 
small graph (a small vertex) to a vertex in the large graph (a large vertex). This mapping 
constrains the possible mappings for other small vertices. We then postulate a mapping for 
the next small vertex, and constrain mappings based on that postulate. Because each small 
vertex we choose may have several possible mappings, we must search each possibility. This 
search takes the form of a tree, where nodes at level i correspond to postulated mappings 
for small vertex i. The mappings at levels 1 through i - 1 constrain the possible mappings 
at level i. 

Each node in the tree musi represent the remaining possible mappings for each small 
vertex. At the root of the tree, each small vertex may map to any large vertex. The root's 
children have a single mapping for the first small vertex, and then several possible mappings 
for the remaining small vertices. Tree nodes that have no possible mapping for at least one 
small vertex are invalid isomorphisms, and we may prune these nodes from the search tree. 
The leaves of the tree will have at most one mapping for each small vertex. Leaves with 
exactly one mapping for each small vertex represent complete isomorphisms. 

Relative to the search time, initializing the search takes little time. So, we will not 
discuss the initialization except to note that some static constraints may eliminate possible 
mappings in the root node. 

Representation In our representation, each vertex has an integer label, from 1 to the 
maximum number of vertices. We represent each graph by an array, where each element 
of the array corresponds to a vertex and contains the set of integer labels for the vertex's 
immediate neighbors. 

implement graph = array of set of  integer; 
var small.neighbors,  large.neighbors:  graph 

Small vertex 1 connects to the small vertices in small_neighbors[l]. 
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We represent tree nodes with an array of sets. Each element of the array corresponds 
to a small vertex and the set contains the integer labels of large vertices to which the small 
vertex might map. 

implement tree.node = array of  set of  integer; 
var node:  tree_node 

Small vertex 1 may map to any element of node [1]. 

Searching Possibilities The coarsest grain of parallelism arises when searching among 
the various possibilities for a given small vertex. Given a set of possibilities in the set 
nodeCcurrent.small], we need to examine each postulated mapping. Using a language 
with the typical fixed control constructs, we would write: 

implement search  ( current_small:   integer;  node:  tree.node  ) 
{ forall  (   1, maxim\im_large,   (  large.vertex:   integer ) 

{ if   (  large.vertex in node[current_small], 
{ examine( current.small,  large.vertex,  node )  >  )  > > 

When selecting a parallel implementation of forall, we must pay an overhead of starting 
each task. Because most possible mappings will be near empty, the if condition is usually 
false, and most tasks will immediately terminate. This represents a substantial amount of 
wasted effort. 

The problem with the above code is that we wish to iterate over the elements of the 
set. but the forall forces us to iterate over the representation for the set and then test 
for membership. A better approach is to combine data abstraction and control abstraction 
and define an iterator for sets, as we would in CLU [Liskov et a!., 1977].10 This enables 
us to specify precisely that the parallelism is over actual elements, and not over potential 
elements. We define a forall.elements operation that executes a closu10 (or operation) 
for each element of the set. 

define forall_elements 
( members:   set of  integer;  work:   closure  ( member:   integer )   ) 

j forall.elements  ( members,  work  )   —>  J work  ( i  ) [i : i € members] 
t work  ( i )   ^  jforall.elements  ( members,  work ) [i : i £ members] 

Iterators are also useful in the distribution of tasks with data. 

Given the f orall.elements operation, we rewrite the search operation as: 

implement search  ( current.small:   integer;  node:  tree.node  ) 
{ forall.elements  ( node[current.small],   ( postulate:   integer  ) 

{ examine(  current.small,  postulate,  node  )  }  )  } 

Iterators (or generators) are a limited form of control abstraction intended to support data abstraction. 
With iterators, the user of an abstraction can apply an operation to all the elements of an abstract data 
type without knowing the representation of the type. 
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This representation is clearer and potentially more efficient, but it requires a mechanism 
to define control abstractions that interact with data abstractions in order to build the 
iterator. The closure mechanism serves this need. 

This grain of parallelism in searching tree nodes is relatively coarse, suitable for multi- 
processors and distributed systems. 

Examining a Mapping The next task is to examine a single proposed mapping and 
propagate the constraints of that mapping. The first task is to enforce the minimal ccii- 
straints — the small vertex may map to no other and no other small vertex may map to 
the chosen large vertex. Next, we check to see if the incomplete isomorphism is a leaf in 
the search. If so, we report the isomorphism,11, otherwise we apply better constraints. 

implement examine 
(  current_small,  current.large:   integer;  node:  tree.node ) 

{ minimal.constraints  (  current_small,   current.large,  node ); 
ifelse  (  current_small = maximum.small, 

{ report_possible_isomorphism ( node )  }, 
{ constrain  (  current.small,  current.large,  node )  } )  } 

We use two non-trivial constraints, vertex connectivity and vertex distance, to filter 
possible mappings. Because these filters only remove elements from the sets of possible 
mappings, we may execute them in parallel, which requires atomic element removal. The 
filters may leave some map sets empty, in which case no isomorphism is possible for that 
node. If we have a valid node, we can choose the next vertex, and search its possibilities. 

implement  constrain 
(  current.small,  current.large:   integer;  var node:  tree.node ) 

{ cobegin  ( { distance.filter  (  current.small,  current.large,  node  )  }, 
{ connect.filter (  current.small,  current.large,  node )   }  ); 

if  ( no.empty.mapping ( node  ), 
{  search  (  current.small+1,  node  )  }  )   } 

At most, this routine offers two-way parallelism. This is usually not enough, alone, 
to effectively exploit modern multiprocessors. However, it can supplement other forms 
of parallelism by doubling the number of processes, which often increases the ability of 
execution systems to balance computational load. Because both filters modify the node. 
a shared-memory architecture is likely to be more effective. On the other hand, when the 
filters execute sequentially, the second filter need not examine mappings removed by the 
first filter, which reduces the amount of computation. The programmer must decide when 
exploiting parallelism here is appropriate and when it is not. 

The constraint filters are not complete. They may leave some irvalid isomorphisms at the leaves of the 
search tree. A separate check will eliminate these before they are rrtwted. 
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Distance Filter Two small vertices separated by a distance x cannot map to two 
large vertices separated by a distance y > x.12 We rely on two precomputed arrays, 
small_distance and large_distance, to retrieve distance information. Using the cur- 
rent small vertex and its postulated mapping as one vertex of each pair, we successively 
choose each small vertex as the second small vertex and remove those possible mappings 
with an inconsistent distance. Using f orall_elements, the opeiation is: 

implement distance_fliter 
( current.small,  current.large:   integer;  var node:  tree_node   ) 

{ forall  (  1, maximum.small,   ( other.small:  integer ) 
{ forall.elements  ( node[other.small],   (  other.large:  integer ) 

{  if  (  small.disteince[current.small,other.small] 
< large.distance[current.large,other.large], 

{ remove.element  (  other.large, node [other.small]   )  } 
)>)})> 

As in the search operation, the if condition quickly terminates many potential tasks. 
Because we cannot evaluate the condition in terms of the members of the set alone, we 
cannot adopt the earlier solution and fold the test into a simple iterator. However, we can 
define a conditional iterator. Conditional iterators accept a condition to test elements as 
well as the work to perform on each element if it passes the test. This approach enables us 
to evaluate the conditions sequentially, avoiding the overhead of a parallel task for quick 
computations; and then create a parallel task for each element that passes the test. The 
conditional iterator for in^pger 'ets is: 

define forall_e.lems.cond 
( members:   set of   integer; 

test:   closure  ( member:   integer  ):  boolean; 
work:   closure  ( member:   integer )   ) 

J forall.elems.cond  ( members,  test,  work )  -»•  J test  ( i )      [/: ? e members] 
1 test   { i  )   -*  \ work  ( i ) [i : i g members  A  test  (  i )] 
1 work  (  i  )   —►  | forall.elems.cond  ( members,  test,  work ) 

[i : i € members  A test  (  i )] 
t test   ( i  )  —►  1 foralj..elems.cond  ( members,  test,  work ) 

[i : i G members  A -i test  (  i )] 

This definition leaves room for several different implementations. 

Given forall.elems.cond, the distance filter becomes: 

implement distance.filter 
(  current.small,  current.large:   integer;  var node:  tree.node ) 

{ forall   (  1,  maximum.small,   (  other.small:   integer ) 

Two small vertices can map to large vertices separated by a distance y < x because the isomorphisi 
may ignore edges in the large graph that shorten the distance. 
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{ forall_elems_cond ( map[other_small], 
(  other.large:   integer ) 

•C reply small_distance[current_small,other_small] 
< large_distemce[current_large,other_large]  }, 

(  other_large:   integer ) 
{ remove.element  ( other.large, map[other_small]   )})>)} 

The conditional iterator is strictly more expressive than a simple iterator. (A constant 
true condition yields the semantics of the simple iterator.) The Implementation of the 
conditional iterator can exploit parallelism in the work, and not among conditions, which 
was not possible with the simple iterator. 

Note that in the code above, the body of the forall_elems_cond acts only on the 
set used in the forall_elems_cond. We are asking the forall_elems_cond to create 
potential parallelism, then ask remove.element to synchronize so that element removal is 
atomic. We can eliminate this inconsistency by recognizing that we are removing elements 
that meet a condition, and use an operation representing exactly that action. We define a 
remove_elements_cond operation that for each element of the set asks a closure if it should 
remove the element. 

define remove_element_cond 
( var members:  set of  integer; 

test:   closure  ( member:   integer ):  boolean ) 

| remove_element_cond  ( members,  test  )   -♦  J test  (  i ) [i : i e members ] 
ttest   (?)   —  j remove_element_cond  ( members,  test  ) [? : ?G members 

Its implementation must synchronize with other operations on the set. 

Our final version of distance.f ilter expresses our intent precisely, while leaving a 
great deal of latitude in the possible implementations of remove_element_cond. 

implement distance.filter 
(  current.small,  current.large:   integer;  var node:  tree.node ) 

{ forall   (   1,  maximum.small,   ( other_small:   integer  ) 
{ remove_element_cond  ( &node[other_small], 

(  other.large:   integer ) 
{ reply small_distance[current_small,other_small] 

< large.distanceCcurrent.large,other large] 
}  )  }  )   > 

The potential sources of parallelism are in the forall (medium grain), and in 
forall_elems_cond or remove_element_cond (fine grain). The former is appropriate to 
shared memory multiprocessors and the latter is appropriate to vector and SIMD machines. 

Connectivity Filter    Given a postulated mapping, the neighbors of the small vertex can 
only map to neighbors of the large vertex    \gain, we can use f orall.elements in iterating 
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over the neighbors. We can also remove possible mappings for the neighbors in parallel. 
The resulting mapping is the intersection of the possible mappings and the neighbors of the 
current large vertex. With the benefit of experience gained above, we can move directly to 
an operation for set intersection and assignment. 

implement connect_filter 

(  current.small.  current.large:   integer;  var node:  tree.node ) 
{ forall.elements  ( small_neighborsCciirrent_small] , 

(  other.small:   integer ) 
•C assign_intersection( node[other_small] , 

large_neighbors[current_large]  }  )  >  )  } 

We can leave the degree of exploited parallelism to the implementation of the set inter- 
section. Given an appropriate implementation of sets, vector instructions can implement 
the intersection. A second potential source of parallelism, appropriate for shared memory 
multiprocessors, can be found in f orall.elements. 

Control abstraction is a powerful tool for defining representation-independent op- 
erations on data. For instance, we can implement assign.intersection with 
remove_element_cond. 

implement  assign.intersection 
( var members:  set  of  integer;  others:  set of  integer ) 

{ remove_element_cond ( members,   ( member:integer ) 
{ reply not element.of_set  ( member,  others  )  }  )  } 

Given such a tool for defining operations, we may be tempted to define data abstractions 
that provide minimal sets of operations and rely on general control abstraction to implement 
more extensive data operations. Unfortunately, when we rely on general control abstraction 
to implement data operations, we lose the ability to take advantage of the representation of 
data in exploiting parallelism. For example, it is difficult to derive an implementation of set 
intersection based on anding bit strings from the above definition of assign intersection 
If data abstractions export a wide variety of operations, programmers of implementations 
of these abstractions can improve performance by taking advantage of the representation. 

Control abstraction encourages data representation-independent programming which 
users of abstractions desire for architectural adaptability. Defers of abstractions must be 
careful to include many operations, so that emp/emer^ers of abstractions can take advantage 
of the representation. 

We identified several sources of parallelism in our algorithm. They are appropriate to 
distributed, multiprocessor, and uniprocessor machines. Programmers need only choose the 
appropriate annotation when adapting the program to a given machine. For example: 



the implementation    may annotate 
of operation the invocation of with any of the annotations  
search forall.elements $SEQUENTIAL $GR0UPED $DIVIDED 
constrain cobegin $SEQUENTIAL $PARALLEL 
distance.f liter       forall $SEQUENTIAL $GR0UPED $DIVIDED 

remove.elem.cond $SEQUENTIAL $VECT0R 
connect.fliter forall.elements $SEQUENTIAL $GR0UPED $DIVIDED 

assign.intersection $SEQUENTIAL $VECT0R 

Selecting combinations of these annotations provides us with 216 possible implementations 
of subgraph isomorphism. Through the use of iterators, conditional iterators, and condi- 
tional data operations, this example shows how data and control abstraction interact to 
provide powerful mechanisms for representing and exploiting parallelism. 

8     Synchronization and Control 

The presence of parallelism in a program generally implies the presence of synchronization. 
When we introduce parallelism, we must also introduce synchronization. Ideally, we select 
synchronization with the same mechanism that exploits parallelism. Parallel programs 
exhibit two types of synchronization: data synchronization ensures consistent access to 
data by independent threads of control; control synchronization cooTd'ma.tes between threads 
created to perform some work in parallel. In particular, synchronization that supports a data 
dependence is control synchronization. As in Multilisp [Halstead, 1985], we assume that 
data synchronization is embedded in data abstractions. In this section, we show how control 
abstraction can enable simultaneous selection of parallelism and control synchronization, as 
well as accommodate data dependence. 

The technique we use to select parallelism and synchronization simultaneously is to 
define control constructs whose semantics (partial orders of execution) include the necessary 
synchronization. Each implementation for a construct then embeds the synchronization 
appropriate to its exploitation of parallelism. An implementation that does not exploit 
parallelism need not include synchronization. 

Embedding synchronization in a . .struct limits its applicability, so we must be careful 
to select a construct appropriate to the problem at hand. When choosing an existing 
control construct that does not provide the necessary synchronization in its implementation, 
we must insert explicit synchronization into the work to be performed. Unfortunately, 
this commits us to a specific exploitation of parallelism that cannot be changed with an 
annotation. The resulting program is more difficult to tune or port. Rather than use 
an inappropriate control construct and additional explicit synchronization, the preferred 
approach is to build a new construct that encapsulates the correct synchronization. 

Embedding Synchronization An interesting example of the use of a control construct 
with insufficient synchronization arose in our previous work with Gaussian elimination. An 
early version of the program developed at BBN [Thomas. 1985] used the Uniform System 
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parallel programming library [Thomas, 1986]. The Uniform System provides a globally 
shared-memory and a set of predefined task generators. Each generator accepts a pointer 
to a procedure and executes the procedure in parallel for each value produced by the gener- 
ator. Thus, generators are a limited form of control abstraction. The Uniform System pro- 
vides generators for manipulating arrays and matrices, including GenOnHalf Array, which 
generates the indices for the lower triangular portion of a matrix. The Uniform System 
implementation of Gaussian elimination used this generator. 

define GenOnHalfArray 
( size:   integer;  work:   closure  (  indexl,   indax2:   integer )   ) 

| GenOnHalf Array  (  size,  work )  -+  [ work  (. i, j  ) [i, j : 1 < i < j <  size] 
| work  ( i,  j  )   ->  1 GenOnHalf Array  ( size,  work  ) [i,j : 1 < i < j <  size] 

This generator provides the parallelism of our triangulate construct, but without 
the synchronization constraints. As a result, the Uniform System program included explicit 
synchronization within the body of the work.13 Gaussian elimination using GenOnHalf Array 
looks like this: 

var system:   array   [ 1..SIZE ]   of array  [  1..SIZE ]   of float; 
var pivot.done:   array  [  1..SIZE ]  of condition; 
var element_done:  array  [  1..SIZE,   1..SIZE ]   of  condition; 
signal pivot.done [1]; 
GenOnHalfArray $DIVIDED  ( SIZE,   ( pivot,  reduce:   integer ) 

{ wait pivot.done [pivot]; 
if  ( pivot  >  1,  { wait element.done[reduce] [pivot-1]  }  ); 
fraction  := system[reduce][pivot]  / system[pivot] [pivot]; 
forall $DIVIDED  ( pivot,  SIZE,   ( variable:   integer ) 

{ system[reduce][variable] 
-:= fraction * system[pivot][variable]  }  ) 

signal  element.done[reduce][pivot]; 
if  ( pivot = reduce-1,  { signal pivot.done[reduce]   }  )  >  ) 

This implementation uses explicit synchronization to provide the serialization implicit in the 
for loop in triangulate $SYNCHED. Given the limited facilities for creating new generators 
in the Uniform System, and the existence of GenOnHalf Array, this implementation was a 
reasonable one. Nevertheless, a more efficient implementation would have been possible had 
the correct control construct been available or easily created. With control abstraction, we 
can build constructs that contain the necessary synchronization. 

Explicit Versus Implicit Synchronization In the implementation of a control con- 
struct, we often have a choice between relying on the synchronization implicit in other 
control constructs or using explicit synchronization.   There is no single resolution of this 

'The actual program used more efficient synchronization than is shown here, but this version accurately 
represents the control flow and is consistent with our earlier examples. 



choice for all cases. For example, the synchronization implicit in the outer loop of our 
phased implementation of Gaussian upper triangulation unnecessarily limits the amount 
of parallelism in the program. On the other hand, some of the explicit synchronization 
used in the Uniform System program is both expensive and unnecessary. The triangulate 
$SYNCHED implementation is a balanced combination of explicit and implicit synchroniza- 
tion. It uses explicit synchronization to remove the limit on parallelism imposed by the 
phased implementation. It also uses a for loop to serialize the application of pivots to a 
single equation, in place of explicit synchronization in the Uniform System program. 

Splitting Closures In the above example, we were able to concentrate solely on the 
partial order rules to derive a new control construct and embed synchronization within the 
construct. We may not always be able to do so. For example, consider a sequential loop of 
the form: 

for  (   1,   N.   (   i:   integer  ) 
{ statement list  1;   x   := a[i];   a[i+l]   := y;   statement list 2 }  ) 

This loop has a loop-carried data dependence between iteration i and iteration i + I. We 
cannot use f orall to specify parallelism because we would violate the dependence. One 
possible approach is to insert explicit synchronization around the statements containing 
the data dependence. Unfortunately, the presence of synchronization within the body of 
the loop would then be separate from the implementation of the loop, which is where 
we choose whether to exploit parallelism. To apply our general technique of moving the 
synchronization into a control construct, we must split the body of the loop and expose 
the dependence in the definition of the construct. We create a construct that accepts the 
loop in three pieces, corresponding to the statements that can execute in parallel before 
and after the data dependence, and the statements containing the data dependence. 

define forall3 
(  lower,  upper:   integer; 

head,  body,  tail:   closure  (  iteration:   integer )   ) 

] forall3  (  lower,  upper,  head,  body,  tail  )   -+  J, head  (  i ) 
[i : lower < i < head] 

t head  ( i  )   —  i body  (  i ) [i ; lower < i < head] 
T body  C * )  -»  J tail   (  i ) [i : lower < i < head] 
I body  ( j  )   —  J body   ( i+ I  ) [i ■ lower < i < head] 
[tail  ( i )  -►  tforall3  ( lower, upper, head,  body, tail ) 

[i : lower < i < head] 

The implementation must execute head, before body, before tail, and execute body, before 
body,+i. Using this control abstraction, we can rewrite the original loop as follows: 

forall3  (  1,  N,   (  i:   integer )  { statement list  1 }, 
(  i:   integer  )   { x  := a[i];   a[i+l]   := y }, 
(  i:   integer )  { statement list 2 >  ) 
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This control construct admits a parallel implementation wherein the head's and tail's 
all execute in parallel. 

implement forall3 $DIVIDED 
( lower, upper:   integer; 

head, body,  tail:  closure ( iteration:   integer )   ) 
{ var blocking:   array  [ lower..upper+1 ]  of  semaphore; 

signal blocking [lower]; 
forall $DIVIDED  ( lower, upper,   ( i:   integer ) 

{ head  (  .'   ) ;   wait blocking [i]; 
body  (  i  );   signal blocking[i+l]; 
tail  (  i  )  }  )  } 

An alternative implementation that avoids the use of explicit synchronization and results 
in slightly different parallelization is as follows: 

implement forall3 $PHASED 
( head,  body,  tail:   closure  (  iteration:   integer )   ) 

{ forall $DIVIDED  (  lower,  upper,  head ); 
for  (  lower,  upper,  body );       always sequential 
forall $DIVIDED  ( lower,  upper,  tail )  } 

The $DIVIDED implementation avoids phases and admits more parallelism, but because it 
uses blocking synchronization primitives, may be less efficient. The programmer can decide 
if the benefit of the extra parallelism is worth its cost. 

9     Programming Methodology 

Abstraction reduces the cost of any program changes that may arise while debugging, port- 
ing, and enhancing programs. Programmers are generally aware of the benefits and costs of 
data abstraction, but not of control abstraction. Just as the introduction of data abstrac- 
tion requires a change in programming methodology, so does the introduction of control 
abstraction. This section presents a methodology for using control abstraction in parallel 
programs to achieve architectural adaptability. 

Abstract Early Abstracting early is a good principle in sequential programming because 
it delays commitment [Thimbleby, 1988]. which localizes the program's assumptions and re- 
duces the effort needed to change a program. However, when programming sequentially, we 
often do not use abstractions because there is a simple, natural, and obvious best implemen- 
tation. The best implementation is usually obvious because most sequential machines share 
the same von Neumann type architecture. In contrast, there are several common type ar- 
chitectures [Snyder, 1986] for parallel machines. The performance of a given exploitation of 
parallelism may vary widely among these type architectures. Abstraction helps adapt pro- 
grams among different type architectures. Parallel programmers should resist implementing 
prematurely, and rely on data and control abstraction. 
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In developing a program using control abstraction, the programmer needs to identify 
the places where the algorithm organizes and schedules 'units of work'. The programmer 
should encapsulate each of these 'organize and schedule' activities in a control construct. 
For instance, a key control abstraction in Gaussian elimination is "select the pivot and 
reduction equations". Its corresponding unit of work is "reduce an equation". So, we 
should explicitly represent the "select" control abstraction with a control construct. 

Where appropriate, programmers should use data abstractions that provide control ab- 
stractions to manipulate the data. For example, we should program in terms of sets (data 
abstraction) and parallel iteration over sets (control abstraction), rather than bit vectors 
(data representation) and parallel scanning of bit vectors (representation-dependent con- 
trol). The resultant program will be both easier to understand and easier to adapt to other 
architectures. 

Use Precise Constructs When the control constructs we use to specify parallelism do 
not precisely express the parallelism appropriate to an algorithm, we must introduce explicit 
synchronization to restrict excessive parallelism or we must accept less parallelism than the 
algorithm permits. 

Explicit synchronization needed to restrict excessive parallelem must be inserted or 
removed depending on the choices made to exploit parallelism. This process can be error- 
prone and can make adapting programs to different architectures difficult. Therefore, when 
explicit synchronization is needed to implement control synchronization, it should appear 
only in the implementation of control constructs, and never in the body of work passed to 
a control construct. If, in the development of a program, it becomes necessary to introduce 
synchronization into the body of work, the control construct should be redesigned to embed 
the synchronization. 

When using a control construct that provides more synchronization or serialization than 
needed, we abandon potential parallelism. Constructs that maximize potential parallelism 
leave more room for exploitation of parallelism and enhance our ability to adapt to new 
architectures. We should use control constructs that provide the maximum potential par- 
allelism allowed by the algorithm. 

We should also choose control constructs that express precisely the parallelism and syn- 
chronization that the algorithm requires, neither more nor less. When selecting an exploita- 
tion of parallelism in such a construct, we implicitly select the appropriate synchronization. 
If an implementation of a construct exploits no parallelism, it needs no synchronization, 
and need not pay the overhead. 

Expose Data Dependences Occasionally, the natural expression of control and its work 
places a data dependence deep within the body of a loop, rather than at the beginning or 
end. If we follow our previous advice and avoid explicit synchronization, this dependence 
forces us to choose a control construct that provides more synchronization than the algo- 
rithm actually requires. The solution is to break the body into separate bodies and then 
use a construct that handles the multiple bodies. This more complex construct is also more 
precise, which gives us more flexibility in exploiting parallelism. 
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We must balance the programming cost of splitting bodies of work against the likely pos- 
sible architectures that may exploit the newly exposed parallelism. This balance depends 
on the synchronization constraints within the construct and the likely size and number of 
the units of work for the construct — small units of work with complex synchronization 
constraints are unlikely to have efficient implementations on current architectures. This 
observation applies to Gaussian elimination. In particular, synchronization constraints be- 
tween pivot and reduction terms (rather than equations) are possible, but synchronizing 
each multiplication and subtraction pair introduces unacceptable overhead on most current 
architectures. 

Reuse Code Parallel programming is hard, so programmers should build on each other's 
work where possible. A library of well-debugged data and control abstractions is the pro- 
grammer's most effective productivity tool. If the programmer needs a reasonably common 
control construct, it may appear in a library of constructs and their implementations. How- 
ever, some control constructs will be algorithm-specific; no library will contain implemen- 
tations for those constructs. The programmer must design and implement the construct. 
However, the programmer need only code implementations as needed for the architecture 
at hand, and need not code implementations for all architectures or possible exploitations 
of parallelism. The set of implementations will expand during program tuning and porting. 
Each implementation remains available for use later. In contrast, without control abstrac- 
tion programmers tend to abandon previous exploitations of parallelism in the search for 
the best exploitation for a given architecture. A program's investment in architectural 
adaptability is primarily in the constructs it uses, and secondarily in the set of implemen- 
tations for those constructs. Changing a construct is a serious undertakLig; using another 
implementation of a construct is not. 

Experiment with Annotations After developing a program using control abstraction, 
the programmer must annotate each use of a control construct with the desired imple- 
mentation. Initially, programmers simply make their best guesses, or leave the choice to 
defaults or the compiler. Later, programmers must refine their annotations. In sequen- 
tial programming, the code sections critical to performance, and the effect of optimiza- 
tions on them, may not be at all obvious, and are often counter-intuitive [Bentley, 1982]. 
The critical code sections are even more unpredictable in parallel programming. Experi- 
mental methods and program analysis tools [Eowler et ai, 1988; Mellor-Crummey, 1989; 
LeBlanc et ai, 1990] will help parallel programmers determine the most efficient exploitation 
of parallelism. When poor performance relates back to a control construct, the programmer 
can easily choose an alternate implementation (use more or less parallelism and synchroniza- 
tion) by changing the annotation to select an alternate implementation. The programmer 
may then measure the effect of the new annotation on program performance. 
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10    Implementation 

We showed the importance of control abstraction in parallel programming, and how to 
exploit different grains of parallelism by selecting an appropriate implementation for each 
control construct. Although descriptive power is an important property, programmers use 
parallelism to improve performance. Any programming language that uses closures and 
operation invocation to implement the most basic control mechanisms might appear to 
sacrifice performance for express!billty. With an appropriate combination of language and 
compiler, however, user-defined control constructs can be as efficient as languaged-defined 
constructs. We now describe straightforward optimizations that reduce the execution cost 
of these mechanisms. 

Invocations as Procedure Calls Since an invocation may execute concurrently with its 
caller after executing its reply, a conservative implementation of invocation provides a 
separate thread of control for each invocation. This approach is prohibitively expen- 
sive. We can reduce this cost by noting that operations that have no statements after 
the reply have no opportunity for parallelism and have a partial order identical to reg- 
ular procedures. We can therefore implement these operations as regular procedures. 
Even though invocations are frequent, the vast majority have valid implementations 
as procedure calls. 

Delayed Replies In those cases where an operation replies early, it is often safe to delay 
the reply until the invocation completes. This delay allows us to exploit the procedure 
implementation once again. We can safely delay a reply if no statement following the 
reply requires resources (such as synchronization variablesj that statements following 
the invocation release. This situation is common and is the case in all our examples. 
We cannot expect the compiler to always determine whether to delay a reply; so we 
use two different forms of reply. One indicates that the compiler may delay an early 
reply, and the other indicates that the compiler may not. 

In-line Substitution Even if we are able to avoid creating a new thread of control for each 
operation invocation, we may still pay the price of a procedure call for each invocation. 
We can reduce overhead even further by statically identifying the implementation 
of operations, which makes it possible to use in-line substitution. We can identify 
implementations through static typing or through type analysis. 

In-line substitution is especially important for the efficient execution of sequential con- 
trol constructs. When the compiler can determine the implementation of a construct 
statically, it can replace the invocation with the implementation, and propagate the 
closure parameter through to its use. Using this technique, we can convert control 
constructs using late replies into equivalent machine branch instructions. 

Stack Allocation of Closures Closures in Smalltalk and Lisp require that thoir environ- 
ments remain in existence for the lifetime of the closure. The standard implementa- 
tion of closures uses heap allocation for all operation activations that contain closures. 
Since the cost of dynamic allocation can be substantial, the widespread use of closures 
could have severe performance implications. 
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There are at least three language-dependent approaches to reducing the cost of closure 
environments. The first is to analyze the program to determine if a closure is used 
after normal termination of its environment. If not, the compiler may allocate the 
environment on an activation stack [Kranz et ai, 1986]. The second approach restricts 
the assignment of closures, like Algol68 reference variables, such that the environment 
is guaranteed to exist. The third approach, which we used in our implementation for 
expedience, defines programs that invoke a closure after its environment has termi- 
nated as erroneous. Each of these approaches enables stack allocation for closures, 
«ignificantly reducing the overhead associated with their use. 

Direct Scheduler Access Note that the presence of an implementation for a control con- 
struct, such as forall, using our mechanisms does not imply that a programming sys- 
tem must use the implementation. In particular, implementations of forall are most 
efficient when they can directly manipulate scheduler queues. We expect that pro- 
gramming systems will provide implementations of very common control constructs 
that are integrated with the scheduler. 

Last-In-First-Out Scheduling In executing a program based on our model, we may 
think of a tree of parallel task where each reply generates a branch in the tree. Normal 
FIFO scheduling strategies will traverse this tree of tasks in a breadth-first manner. 
In a breadth-first execution, the number of active nodes grow very quickly. Their 
representation will quickly consume the entire storage of almost any machine. 

The typical solution to this problem is to use a LIFO scheduling queue [Halstead, 
1990], which encourages a depth-first execution and the number of active nodes is 
relatively small. When a processor has an empty scheduling queue, it takes tasks 
from other processor's queues. In contrast to Concert Multilisp and Mul-T, we take 
tasks least recently enqueued rather than most recently enqueued. This provides 
minimal impact on the locality of busy processors. 

Using these optimizations, our prototype implementation of Matroshka [Crowl, 1988] 
produces sequential code comparable to that produced by a C compiler without optimiza- 
tion. Our prototype performs only the most basic optimizations and Matroshka programs 
execute at half the rate of comparable C programs compiled with an optimizing compiler. 
Four additional low-level optimizations bring Matroshka execution times to within 2% of 
comparable C programs. We expect that a production compiler for Matroshka would be 
competitive with an optimizing C compiler. 

11     Conclusions 

Previous approaches to architectural adaptability separate potential parallelism from ex- 
ploited parallelism via multiple implementations for predefined control constructs or mech- 
anisms. We extend this work with control abstraction, which enables multiple implementa- 
tions for user-defined control constructs. 

With control abstraction, programmers are not limited to a fixed set of control con- 
structs. Users can create new constructs that express arbitrary partial orders of invocations 



and store them in a library for use by others. We presented a model of parallel programming 
based on a small set of primitive mechanisms for control abstraction and showed how the 
model can directly implement common parallel control constructs. 

With the ability to define algorithm-specific control constructs, we can more precisely 
represent the potential parallelism within an algorithm. Each control construct can have 
multiple implementations, each of which exploits a different subset of the potential paral- 
lelism defined by the construct. Selecting different implementations of a construct at its 
points of use exploits different sources of parallelism within a program. By embedding syn- 
chronization in the implementation of control constructs, separate from the program logic, 
programmers select parallelism and synchronization simultaneously. 

We showed how to use control abstraction to achieve architectural adaptability in ex- 
plicitly parallel programs. In developing adaptable programs, programmers must identify 
potential control constructs, ensuring that they encapsulate any necessary synchronization. 
Programmers adapt parallel programs by selecting an implementation for each use of a 
construct and then experimentally measuring the effect. Programmers can choose among 
existing implementations of a construct or build new implementations as needed. The set of 
implementations will expand during program tuning and porting, leaving different exploita- 
tions documented within the source. In addition, we have presented several optimizations 
that facilitate an efficient implementation of control abstraction. Based on our experience, 
we believe the benefits and reasonable cost of control abstraction argue for its inclusion in 
explicitly parallel programming languages. 
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